支持向量机(SVM)是一类可用于分类和回归的有监督机器学习模型。其流行归功于两个方面:一方面,他们可输出较准确的预测结果;另一方面,模型基于较优雅的数学理论。SVM旨在在多维空间中找到一个能将全部样本单元分成两类的最优平面,这一平面应使两类中距离最近的点的间距(margin)尽可能大,在间距边界上的点被称为支持向量(support vector,它们决定间距),分割的超平面位于间距的中间。对于一个[......]
支持向量机(SVM)是一类可用于分类和回归的有监督机器学习模型。其流行归功于两个方面:一方面,他们可输出较准确的预测结果;另一方面,模型基于较优雅的数学理论。SVM旨在在多维空间中找到一个能将全部样本单元分成两类的最优平面,这一平面应使两类中距离最近的点的间距(margin)尽可能大,在间距边界上的点被称为支持向量(support vector,它们决定间距),分割的超平面位于间距的中间。对于一个[......]