最近在做分段数据统计的时候,发现某些情况下,离群数据严重干扰了数据统计,所以一直在想办法对离群数据进行处理。
最典型的离群数据,莫过于单根峰了,在气显示相对活跃,特别是钻遇过裂缝的井里,频繁出现因为停泵引起的后效气测异常,这些异常不是地层含气性的真实反映,理应不参与数据统计。平常其实没有太多注意这类现象,但是有的井实在太频繁,并且单根峰与正常的气测值差异太大,有的已经达到10倍左右了,不处理对数[......]
最近在做分段数据统计的时候,发现某些情况下,离群数据严重干扰了数据统计,所以一直在想办法对离群数据进行处理。
最典型的离群数据,莫过于单根峰了,在气显示相对活跃,特别是钻遇过裂缝的井里,频繁出现因为停泵引起的后效气测异常,这些异常不是地层含气性的真实反映,理应不参与数据统计。平常其实没有太多注意这类现象,但是有的井实在太频繁,并且单根峰与正常的气测值差异太大,有的已经达到10倍左右了,不处理对数[......]
还没有搞定机器学习,又开始惹上深度学习,反正二者有太多一样的思维。
很多人把深度学习称为神经网络的别名,也不是没有道理,基本上后面起作用的都是神经网络算法,数学家真是牛,能把那么复杂的现实问题,转化为数学问题,更重要的是,这些数学问题得到了解决。
最近买了本《深度学习的数学》,号称用excel就可以实践,很是诱人。买回来发现书很小,居然是32开本的,看了一下页数,二百来页,难怪,内容不够丰富。[......]
最近又要吹牛了,恶补了点基础概念。
机器学习(Machine learning)是人工智能的核心算法,是一个源于数据模型的训练过程,最终给出一个面向某种性能度量的决策。
机器学习可以基于数据,帮助做出更高效、更准确的判断和决策。机器学习算法在处理非结构化数据、大数据量数据的利用、解决大规模变量等方面具有较好的作用。
机器学习的基本思路:将现实问题抽象为数学问题,用计算机解决数学问题,从而解决[......]
最近发现两个线性代数学习的好材料。
最近几年一直在努力学习线性代数,这个号称数学里最简单的东西,把我折磨得不要不要的。搞了很多书,从2012年开始,就搞了一本MIT的Gilbert Strang教授的教材,硬头皮看了一点点[教学视频](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/),感谢网易做的[......]